第③个图形一共有8+(5×2)=18个五角星,
…
第n个图形一共有:
1×2+3×2+5×2+7×2+…+2(2n﹣1)
=2[1+3+5+…+(2n﹣1)],
=[1+(2n﹣1)]×n
=2n2,
则第(6)个图形一共有:
2×62=72个五角星;
故选:D.
【点评】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.
二、填空题
13.﹣6的相反数是6,﹣(+10)的绝对值是10, 的倒数是﹣ .
【考点】倒数;相反数;绝对值.
【专题】存在型.
【分析】分别根据相反数的定义、绝对值的性质及倒数的定义进行解答.
【解答】解:∵﹣6<0,
∴﹣6的相反数是6;
∵﹣(+10)=﹣10<0,
∴|﹣10|=10;
∵(﹣ )×(﹣ )=1,
∴﹣ 的倒数是﹣ .
故答案为:6,10,﹣ .
【点评】本题考查的是倒数的定义,熟知相反数的定义、绝对值的性质及倒数的定义是解答此题的关键.
14.若A=4x2﹣3x﹣2,B=4x2﹣3x﹣4,则A,B的大小关系是A>B.
【考点】整式的加减.
【专题】计算题;整式.
【分析】把A与B代入A﹣B中,判断差的正负即可.
【解答】解:∵A=4x2﹣3x﹣2,B=4x2﹣3x﹣4,
∴A﹣B=(4x2﹣3x﹣2)﹣(4x2﹣3x﹣4)=4x2﹣3x﹣2﹣4x2+3x+4=2>0,
则A>B.
故答案为:A>B.
【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
15.若单项式﹣ a2xbm与anby﹣1可合并为 a2b4,则xy﹣mn=﹣3.
【考点】同类项.
【分析】因为单项式﹣ a2xbm与anby﹣1可合并为 a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy﹣mn的值.
【解答】解:∵单项式﹣ a2xbm与anby﹣1可合并为 a2b4,
则此三个单项式为同类项,
则m=4,n=2,
2x=2,y﹣1=4,